Techtrovert

stumbling through computer science

Collective Success

I feel like teachers and schools are working harder than ever to keep our students on track.

After spending countless hours redesigning our courses, setting up Google Classrooms, and getting devices out to numerous students… only a few of our kids are taking advantage of these resources or online spaces.

This is frustrating and worrying for the success of our kids and also a reflection on my level of professionalism as a teacher. It is challenging not to feel guilt about being paid while others around the globe have lost their jobs and are now relying on government relief funds.

Despite this worry, I always try to come back to the thought that we ARE doing our best and not to take it personally if students don’t participate, or spend time pressuring students or parents to get their kids online.

We have no idea what’s happening right now in students’ minds, hearts, and homes that’s causing them to put academics on the back burner. 

Resist the natural human tendency to make assumptions and judgements: These kids don’t care. The families don’t value education.  I’m not doing my job. Why am I getting paid to do this?

Instead, get curious. What else might be going on that’s preventing Google Classroom from being their foremost priority? How else could we drag content out of what they are already doing at home? How can we support without it looking like we are nagging on the students to get online?

I’m finding that it is nearly impossible to focus on ANYTHING or complete a task that is longer than 10 minutes. There are many days I’d rather watch TikTok videos or countless episodes of Netflix shows than get work done; I do the bare minimum because my concentration is shot.

And this is with the maturity level, self-discipline, and time management skills of an adult who’s living in a safe and peaceful home! I can’t imagine spending hours a day on schoolwork right now as a kid, especially if that work was not required for your final grade.

If your students would rather play and Facetime with friends than do school work right now, keep in mind that a) that’s normal behavior for kids, and b) these can be coping mechanisms for stress. 

Kids and adults alike are engaging in numbing behaviors and distractions to help them deal with the stress of being confined to their homes. You personally may be coping well, but not everyone is, and making them feel shame about being unproductive in a pandemic isn’t likely to help.

So, don’t blame yourself OR your students if they’re not completing the work.

This is a time when it’s more important than ever to work from a human-centered lens, where we put our collective socio-emotional wellbeing first.

Even if your district is expecting you to teach like everything’s normal, you can infuse grace and empathy in your interactions with kids. You can start class with check-ins, be kind in your late work follow ups, and so on.

Focus on what you CAN control rather than escalating consequences for the stuff you can’t. Your job is to simply continue offering support. 

Keep looking for meaningful ways to connect with your students and engage them in ways THEY care about right now (here are some ideas that are working for fellow teachers).

Measure your success by how well you’re doing YOUR part, rather than by how many kids participate. 

What you’re doing right now means something, even when students aren’t doing the assignments.

You see, the way we are showing up in our daily work right now is carving out the path to where we’re going next. It is shaping the way our students and families view school. It’s establishing what is truly important in how we educate kids, and what’s most essential about the role of a teacher.

This is a time when the rigid structures that define how we do school have been stripped away. What lies underneath is our shared humanity and connection. This is the time to embrace that, in all of its messiness.

Coding – the hottest topic in teaching since sliced bread

… at least I think that’s how the expression goes.

The idea of teaching coding in school has become a global phenomenon – every teacher wants to have some sort of coding program in their classroom. Whether this is through remote learning, completing a coding program themselves and teaching their kids, or going to tech workshops as field trips with their classes. This global interest is based on the belief that it is important, both educationally and socially, for students to learn how to code or program from an early age.

Teaching kids to code or program early does not only create a pool of skilled programmers to meet the needs of the future job market, it does much more. Learning to code enables children to use digital technology to develop their creativity and problem solving skills. It empowers children in our technology-based society to fill the role of a creator of societal content and marketable skills rather than simply a consumer of global products and ideas.

What do I mean by coding and programming, exactly?

When I am talking about teaching kids to program or code, I mean that they are learning the skills to tell a machine, a computer, a software program or Web page what to do. This is a feat accomplished behind the scenes… or screens… by mobile phones, computers and social media we use every day.

Telling a software program or Web page what you want it to do requires coders to use algorithmic thinking. Algorithmic thinking breaks down the steps of a complicated task and works backwards from the final product to the initial stage. This type of thinking is a large component of the curriculum when teaching students about coding.

An example of algorithmic thinking could be a simple task such as how to make a peanut butter sandwich.

The final product?

A peanut butter sandwich.

But what steps were made to create this sandwich?

Let’s break it down into steps starting from the very basics. Please note there are additional steps which could be listed, such as open the cupboard, get out a plate, lay the plate on the table, etc. but for the sake of this example we will only be focused on the algorithm or steps needed to make just the sandwich itself.

Source: https://www.instructables.com/id/How-to-Make-a-Peanut-Butter-and-Jelly-Sandwich-4/

  1. Open the bread bag.
  2. Get out two slices of bread.
  3. Put the bread slices on a plate.
  4. Get out a knife.
  5. Get out the peanut butter.
  6. Get out the jam.
  7. Open the peanut butter.
  8. Open the jam.
  9. Put the knife in the jam jar.
  10. Spread jam on one slice of bread.
  11. Put the knife in the peanut butter.
  12. Spread peanut butter on the other slice of bread.
  13. Lay the jam sliced bread jam side down on top of the peanut butter slice.
  14. Cut the bread diagonally from the top right corner to the bottom left corner all the way through.
  15. Enjoy your peanut butter and jelly sandwich!

This “Exact Instructions” Challenge video by Josh Darnit demonstrates algorithmic thinking when making a peanut butter and jelly sandwich by following the steps exactly… which leads to a hilarious outcome.

Source: https://www.youtube.com/watch?v=Ct-lOOUqmyY

Teaching students about algorithmic thinking using common tasks we compete every day, such as this simple sandwich making, closes the gap between computational thinking and common sense. It shows that there isn’t that big of a difference between using algorithms in the computer to complete a task and that of every day actions. Every outcome and product can be broken down into simple steps.

Through coding and offline coding lessons (those which don’t use computers or programs to demonstrate a coding concept… see the sandwich example above), students develop algorithmic thinking skills. This enables them to better understand, interpret, and assess the impact of such thinking on our lives. Some may even take these thinking skills and take part in developing and guiding the use of algorithms in the world of the future.

Coding and computational thinking empowers children to use technology more effectively and guides them into choosing the right programs or devices to help them achieve their outcome. Integrating coding into their everyday learning enables students to better understand all aspects of the digital world and become better prepared for the future developments in tech and digitization.

10 key benefits of learning to code at school:

  1. Increased academic motivation
  2. Acquisition of mathematical, problem solving and computer skills
  3. Development of autonomy
  4. Teamwork and collaboration
  5. Critical and creative thinking
  6. Improved self-esteem
  7. Increased sense of competence
  8. Ability to find information
  9. Increased resilience in the face of challenges
  10. Enhanced reasoning, organization, and planning skills

In case you weren’t totally convinced about the benefits of coding, check out this Ted Talk by Mitch Resnick of MIT Media Lab, who explains that coding isn’t just for computer whizzes, it’s for everyone.

Source: https://www.ted.com/talks/mitch_resnick_let_s_teach_kids_to_code?language=en

Digital Literacy Framework Guiding Questions

What is the Story? 

The background behind the digital literacy framework is to guide and assist students who will continue to be surrounded by digital learning tools and media. It enables teachers and educators to develop strategies to for awareness, creativity and efficacy for students while interacting with and creating online tools. The framework acknowledges there are concerns with the wide spread availability of digital tools including the internet and media, and it incorporates safety, personal awareness and critical thinking of the tools and sites explored in digital media.

What theory, literature, frameworks and models have guided the framework?

Critical thinking, creative thinking, personal and social efficacy, communication, self-awareness, social awareness, self-expression, and research strategies.

What is missing?

This framework provides structure and theory behind how to implement the frameworks listed above for students to use and interact with digital learning tools. The learning outcomes and grade ranges help scaffold learning outcomes to become increasingly complex as grades progress. One aspect that is missing is acknowledging that not all students or teachers will use this framework or curriculum from kindergarten and some may start at higher grades. Including the grade range these concepts should be taught at could undercut the importance of these seemingly elementary level ideas. Removing the grade ranges will improve the accessibility and reduce barriers for learners and educators wanting to bring this framework into their classroom regardless of what grade they are teaching.

What other frameworks, theories, and models could improve the framework?

Including links and examples for projects or lesson plans to accompany these learning outcomes will increase the userability (?) of this resource. Currently it covers the outcomes with content suggestions rather than concrete examples teachers can use in their classroom. In today’s busy times, teachers want a resource they can read, understand and then bring into their classroom with minimal effort and barriers. Concrete examples and lesson plans will likely be added as educators have time to brainstorm and create resources supporting these learning outcomes.

Choose a curriculum area you want to explore further

The curriculum area I want to explore further is the communication and collaboration – technology mediated communication and collaboration.

Brainstorm a project you want to redesign or design

I would design a task where students are in a collaborative online learning platform and their instructor is teaching remotely from a location not physically in the school. Each student will have their own computer and meet in the online digital classroom. They will be learning the concept of computer science and be learning how to build their own pac-man game. They will listen to the remote instructor in the digital classroom, watch the example videos and be guided through the first steps on SNAP! to design their game. The online instructor will show them the beginning steps to building the Pac-Man game, but the creativity, character designs, and colours in their game will be up to the students. Students can work together on the game or have another student play their game after building it in SNAP! Collaboration will occur with students listening to the remote instructor, working in groups to build the game, have a friend play their game, and sharing their projects with the class after completion. A showcase of their games will occur after with students from other classes logging in to play each students game.

How does the framework integrate into your project?

This project includes collaboration, creative thinking, problem solving, communication, time management, workspace organization, and presentation skills both online and offline.

Active Learning and Engagement

Where Did This Idea Come From?

The idea to investigate and explore active learning strategies came after a breakout room discussion during our meeting about effective learning design back in December.  Our conversation started with some concerns about online learning not being engaging because students were not face-to-face with each other, they could mute their microphones, and effectively just be a passive observer during the lessons. Our breakout group realized, however, that this disengagement also happens just as often in face-to-face learning where students are present in the classroom. In person, though, it looks more like the student sitting at the back of the room, with their head down, and not participating in group discussions. This got us thinking about how we could adapt our lessons, both online and in person, to promote more active learning and increase participation.

What Is Active Learning and Why is It Important?

As a teacher, one of the biggest challenges is not the lesson planning itself, but rather getting the students to participate actively and engage with the material. Teacher-centred lessons are the easiest way to disengage your students because they take the spot-light off of them and you become the only source of voice or information. Using active learning strategies, you switch the emphasis from you onto the students. These techniques empower, engage, and stimulate a classroom by putting the focus and source of knowledge onto the students.

Active Learning Strategies

1. Change Up Your Classroom Setting

One of the easiest ways to bring new life into your lessons and students is to change the environment in which they learn. A new environment will break up the monotony of the school schedule, allow students to actively decide where they want to sit or stand, and a different surrounding will inspire new ideas and ways of thinking.

Teaching Outside https://twitter.com/jlmilti/status/1045692778141929473

Here are three places you could hold your class other than your classroom:

  • Outside. Fresh air and a non-conventional classroom challenges students to move differently and embrace the fresh air and sunshine which will energize them. There is nothing more thrilling to a high school student than the words “we’re going outside!” They will be able to let their guard down and become engaged with the content in a way they won’t even realize is a lesson.
  • Gym. Allowing students to walk, stand or use quiet gym equipment such as foam blocks or balls while they are discussing ideas or brainstorming in groups
  • Common Area. Bringing your students to a more public area of the school may evoke leadership or mentorship with the younger students in the school and interact with other staff members or teachers who may not usually get to observe the learning happening in the class.

2. The Devil’s Advocate

The devil’s advocate approach challenges students to engage in the content or topic being explored and look at it from the opposite point of view being presented in the lesson. Students will have conversations in small groups, with one or more person being assigned the task of looking at the subject from the opposite point of view and presenting their thoughts.

For this to be effective, your topic must be suitable for debate and discussion and should have a well-supported argument for both sides. A great example in the media right now could be oil spill mediation and recovery plans looking at the different methods of transporting oil and how to best deal with possible environmental complications that could arise in each situation.

Using the devil’s advocate approach is flexible for any grade level or group size. You could simply divide the class into two sections, or create smaller groups for older students. Follow up lessons could include a presentation of your groups ideas or a visual representation of the other persons’ point of view on the topic. Another benefit of this strategy is increasing student engagement between each other and switching from a teacher centred to student centred approach to learning. Your students become experts on a topic from both perspectives and deliver it at a level that is appealing and at an age appropriate level.

Below are some examples of starter topics and opposing claims which could help guide your class into a devil’s advocate exercise.

devils advocate active learning activity
Image source: Bespoke Classroom.

This approach can help cultivate active learning in the classroom by encouraging students to:

  • Think more critically, challenging  participants to expand their understanding of the perspectives surrounding an issue and to view it through a different lens
  • Become more engaged, fostering involvement by drawing out opinions to explore the complexity of an issue being studied
  • Produce deeper understanding of topics or issues, using rigorous analysis to collectively clarify, probe, and pose alternatives to problems being discussed

3. Game-based Learning Platforms

In today’s classroom, a large percentage of students actively engage in video games outside (and during!) class – so why not incorporate games into your lessons?

Game-based learning platforms add depth and differentiation while allowing students to be engaged with the lesson content. Avatars, music, challenges, and escaping to different worlds all while solving a quadratic equation! Students can lose themselves in the world of video games while developing an interest in the content in a whole new way.

Video games give material relevant application and evaluation. Students solve challenging problems while using technology they are interested in on a platform they are familiar with.

An effective platform that using video games to engage learners is Prodigy, which is free to play. This platform helps students tackle problems in math using words, charts, pictures, numbers and games.

Create and sign into your free teacher account here:

Sign up Log in

Below are some guiding questions to ask yourself when practicing some of these active learning strategies:

  • Will this be engaging and exciting for my students?
  • What assessment can I take from this exercise?
  • Is the student placed at the centre of this learning strategy?
  • Will this encourage my students to discuss a topic with one another?
  • Am I giving students the opportunity  to reflect on the learning process?
  • Is this activity getting my students to think deeply and critically about  a topic or lesson or is it simply a comprehension exercise?

New Teacher, New Role

Some teachers may be hesitant to let go of the reigns and step down from their stage in front of the room. They may question that students could learn anything from their peers and be skeptical of the effectiveness of video games for helping students in math.

Engaging in an active learning model, the teacher becomes more of a facilitator for the learning experience and helps students’ along their journey to discovery of topics they are interested in. Taking a step back and observing your students during an active learning experience allows teachers to see their content from a different point of view. They will be able to engage more with their students, content and take the lesson further by sharing the role of teacher among the students and video games. The teacher is no longer the sole bearer of knowledge and collaboration can take place.

Active Learning Blogs and Twitter Posts

Three Act Math – Active Learning in Math

Flexible Seating Arrangements in the Classroom

Using Social Media to Engage Learning

The Chair Free Classroom

A Flexible Classroom

Creating a Coffeeshop Vibe in the Classroom

Effects of Movement on Learning in the Classroom Article

Pros & Khans

https://www.khanacademy.org

A Teaching Khan-undrum

The school that I currently teach as is a First Nations cultural school with a student population of just under 100 students. On the best of days, we have around 80 students in attendance, with many students frequently away for cultural reasons including ceremonies, hunting trips, or travel. The backbone of our school belief is that our students are the future of the Saanich Nation. Our school values a collaborative partnership of students, parents, elders, and leaders working together with educators in the community to ensure our youth develop into confident, caring, capable, and compassionate human beings.

As a teacher at the school, I recognize that it is not enough for students to leave school simply with the ability to communicate effectively or to understand intimately the principles of mathematical and scientific theory; they should also leave with the sensitivity, the skills, the desire, and the good judgment to put their knowledge to use confronting the issues, problems, and concerns of humankind and the world in which they live.

The class composition changes every year based on student demographics; historically, we have only offered grades 8-10 at the high school, with the students having to leave to graduate at a nearby high school. This year is the first year we have opened our doors, restructured our classrooms, and are offering classes for grades 6-11.  My course-load this semester includes math 9-11, health 8, and a math intervention block for all students. One of the blocks that I teach is a math 10/11 split class, with students in all levels of academics and abilities. In addition to the students having a range of academic abilities, many of them are away often for cultural reasons or to help at home with their siblings and relatives. Our school recognizes that our students, in addition to a heavy course load at school, have full time jobs as caregivers in their home and cultural community. It is because of these reasons that many of our students miss multiple days of school and therefore miss lots of in class instruction which is sometimes out of their control. Attendance is key in the upper level math courses in particular, because of the pace at which content is delivered, and there is a focus on preparing students for the upcoming numeracy exam in April. These two factors left me in a hard spot: I have students who are frequently away from school, are academically low, and need to pass this numeracy exam with the help of direct instruction. I couldn’t see a way for my students to pass solely depending on face-to-face instruction in the classroom from me as the only teacher. After reading Crosslin’s article regarding mixing online and direct instruction in a wholistic manner using effective practices, I gained valuable insight into how I was going to be able to effectively run this course and get my students on track for graduation.

Combining Khan and Classroom to Create… a Klassroom

My solution for addressing a split grade class with a wide range students at different academic levels and varying attendance frequencies was to introduce an online instruction component to some of the more content heavy components of the math 10/11 curriculum. Finding an online course that was able to effectively demonstrate key concepts like algebra, variables, and multi-step substitution would free up time from me writing my own notes on the whiteboard, and allow me to supplement those lessons with my own examples and extra support to students that need it. This course needed to be adaptable to my high achieving students but also flexible to deliver content at a more basic level for students who are struggling or learn in a different or assisted manner.

The first speed bump of realizing I needed to find an online course with content to cover the heavier components of the curriculum was the easier part. The second component was that I needed the course to be either free, or relatively inexpensive per student. Our school is federally funded, and funding is dependent on registration status of each student and whether or not they identify as a First Nations individual. Our school supports a one hundred percent First Nations population, which means we have full federal funding from the government in terms of educational support. The only issue is that because I was proposing an online course late in the year, most of this funding had already been allocated to other needs in the school. So, I needed a program that was not only effective and worthwhile, but also free or cheap. With this in mind, along with the quality of content, I continued my search for the perfect online course.

My last hurdle was that this program needed to be accessible to my students at home in case they miss classes and want to catch up on their own time. As if finding a quality course for free that is adaptable to all learners wasn’t difficult enough, this course also has to be smartphone or tablet friendly, because we don’t have students with access to laptops or computers at home. This course needed to be something they could potentially do on their smartphone or tablet at home or off campus. I should mention that our school does acknowledge and factor in cultural and community work students complete which may take them out of school, but I wanted students who were keen to complete their work when they did miss classes to be able to do so with limited barriers.

With my obstacles laid out in front of me, I set to work trying to find a quality math 10/11 course that was adaptable to learners, free, and compatible with a smartphone or tablet.

After an extensive search and fighting multiple urges to just enrol every student in an expensive SIDES program, I checked out the Khan Academy website, and knew I had found the co-instructor I had been looking for.

What Khan This Academy Do for You?

Khan Academy is a non-profit MOOC provider. The platform being non-profit means that there is no such thing as pricing – everything that you’ll find on the site is available completely free of charge. MOOC abbreviates as Massive Open Online Courses – this means that Khan Academy provides its user with free, widely available and subject-specific courses that they can learn from.

https://www.khanacademy.org

The entirety of the content on the site is presented in the format of YouTube videos – which means students could access the videos from their smartphones or tablets… check!

If The Khan-ditions Are Right, You’ll Be Hooked

The homepage of Khan Academy is very straightforward, with an option to log in as a learner, student or teacher. The layout is simple, and it is easy to select from the multitude of courses they offer, create your own classroom, profile, and have students join your class with a simple code of letters and numbers. Having a stress-free, simple layout helped my students log in with ease and avoided frustration or opening another webpage of distraction before I could get around to them to help them log in. The log in page, even though it’s simple in design, isn’t generic. It offers a unique course topic layout that allows you to get a pretty good idea of what you can find on the platform itself. Having a landing page that is easy for students to log in, and get started right away reduces the temptation to go to another web page and creates the right conditions for them to get engaged in the online content right off the bat.

“You Khan Learn Everything. For Free. For Everyone. Forever”

https://www.khanacademy.org

Once you decide to choose a course, you can either do so by typing a desired keyword into the search bar or choosing a topic from the drop-down menu on the top of the main page. One thing that I immediately noticed is that even though Khan Academy offers a wide selection of topics to choose from, the main emphasis lies in math and subjects directly related to it. I simply had to choose the course I wanted to set up as the teacher, and from there an exhaustive list of lessons, videos, articles, questions and assessment options were presented to me. I could choose the students I wanted to assign the lessons to, when the due date was, and if the questions would be the same for all students. In a matter of minutes, I had set up my math 10/11 course with the lessons and assessment I wanted, and after my students had created their own log in and added my course code, they were working away at their own pace. With Khan Academy delivering the content to each student, I was free to roam around, monitor their progress and help with any issues or questions they had about the videos or questions. In one morning, I had gone from being a single teacher in the room, to co-teaching with another instructor in a manner which allowed each student to learn at their own level and pace.

https://www.khanacademy.org

Khan-tinuing Positive Reinforcement

In addition to quality content, the Khan Academy courses also offer some engaging features. When it comes to paid, subscription-based e-learning platforms, cool and interesting features are usually used to attract potential new customers while maintaining the already-existing ones. Since Khan Academy is free to use, however, all of the features that it offers are just a nice addition to an already great package.

If you choose to use Khan Academy, you will have access to personalized dashboards, instructional videos, various exercises and so on. A highlight on the course page is that the platform has an integrated “level” system – students gain XP (experience points) for learning and taking certain courses, thus increasing your overall level with time. This is a great visual motivator, and it adds some interactiveness to the overall process of learning.

https://www.khanacademy.org

The company also offers some interactive features for teachers and parents. After creating an account, as a teacher, I was able to access a huge data pool of information (all standardized and up-to-par), practice exercises, video tutorials and so on. Furthermore, Khan Academy offers tools to track student progress – something essential to all teachers. For parents that are also interested, they could also track their students’ progress.

https://www.khanacademy.org

Free Khan-tent for All

Creating an account and learning on Khan Academy is 100% free. The company aims to provide and make education available to anyone and everyone around the world – free of charge. This does make me question where and how the information my students and myself provided would be used. When logging in and creating an account, all that was asked of my students and myself was to choose their role, create a username, and a password. There was an option to link and log in using a Google account, but I opted for my students to go with the first option to reduce the amount of personal information they were giving. I would be curious to delve deeper into where Khan Academy’s information is stored and what issues are related to the ownership of this data.

In Khan-Clusion

Khan Academy is effective in delivering cross-curricular content, with multiple subjects being presented under the same topic. Also, there was a wide variety and blend of multi-modal lesson delivery methods which were delivered more seamlessly than in a face-to-face classroom. There is a flow between students watching a video, working on an assignment with diagrams and animations for support, and demonstrating their learning through a quiz or reflection.

Distance education is a convenient option when smaller schools have to combine grades based on the number of students. It would have been difficult to combine a wide range of content at multiple levels in order to effectively reach all of my students in my split math class. With online courses like Khan Academy, I was able to assign work to individual students who were at or below grade level. This online course also allowed students to work at the grade level they were at without being embarrassed or teased for being at a lower grade. It is less obvious when everyone is on the same program rather than working on completely different worksheets. I will continue to use Khan Academy in sections of my math classes, as it is an effective method of online instruction.

References

Crosslin, M. (2018). Effective Practices. In M. Crosslin (Ed.),Creating Online Learning Experiences. Mavs Open Press. https://uta.pressbooks.pub/onlinelearning/chapter/chapter-5-effective-practices/

https://www.khanacademy.org

Collaboration, Computer Science, and Community

Multimedia and Multiplace Based Learning

Language and culture are integrated into every subject and discipline in my school community. Students are learning the language of SENĆOŦEN, which is spoken in their surrounding communities and at home. Most are fluent, some are enrolled in the immersion program, and many only speak this language at home. The process of learning SENĆOŦEN does not happen from simply writing the words on paper; it is critical to hear, feel, and see the words in context. For example, when learning about plants and plant names, we go out onto the land and find the plant in its natural habitat. The SENĆOŦEN name for Tod Inlet is SṈITȻEȽ – which means the land of the blue grouse. To learn the name for Tod Inlet, and for its meaning to be significant, visiting the land and observing the species which interact and exist at the site creates a deeper connection and understanding to the name. If students were to only learn the name for Tod Inlet on paper in the classroom, it would merely be a name on a list that they would have to memorize later. SENĆOŦEN and the process of learning languages is a perfect example of multimedia/modal learning to effectively understand content. You cannot integrate a language into your everyday life without hearing it, writing it, and experiencing the roots of the words themselves. The Basic Principals of Multimedia Learning was significant to me and I have been able to observe this teaching practice through a First Nations lens, which also integrates the First Peoples Principals of Learning.

Games and Their Purpose

Game-based learning is integrated heavily into our remote Introduction to Computer Science course. Students are designing projects using Avatars and recreating retro games such as Snake and Pong. Designing, experimenting, creativity, and a sense of play are principals in which this course focuses around. Lots of time is given to students to explore our coding programs, play the games, and create projects which represent their interpretation of the project outline. An example is students are encouraged to play games like Roblox, Lightbot, or Minecraft on lab days to be inspired by how those games run and are designed for their own projects. SNAP! is the workspace from which students create, which in itself is a digital Makerspace. Without an objective or guidance from the instructors when students are in SNAP!, this platform wouldn’t be effective. A frontloading of information and scaffolding is necessary to show students how to create code to move their characters, build game platforms, and perform actions. This was a large topic examined in the Game-based learning article: a Makerspace is a platform for learning but it won’t provide the learning itself. What Makerspaces, such as SNAP!, allow for is scaffolded instructions to equip students with the skills to produce projects inspired by their individual creativity.

Leadership and Connection

First Peoples Principles of Learning. http://www.fnesc.ca/wp/wp-content/uploads/2015/09/PUB-LFP-POSTER-Principles-of-Learning-First-Peoples-poster-11×17.pdf

Our proposed project will emphasize the disconnect and hesitation new teachers in terms of integrating First Nations content into their practice, whether they themselves are First Nations or not. Teaching can be an isolating field, with many resources only being pulled from the internet or ancient books found amongst bookshelves at the back of the library. Since I started at the First Nations Leardership school, it became apparent how important collaboration and the sharing of knowledge is to really understand how to incorporate these Ways of Knowing and Principals of Learning into your lessons and pedagogy.

The Role of Leadership for Information Technology aligned with these Principles in a refreshing way, as it outlined how to integrate traditional, spoken knowledge and information sharing, with digital platforms and resources. A main idea behind these Leadership principles was adaptation and collaboration. In order for the information that is being shared to be useful, it must be presented in a way which is appropriate for the audience and situation where the learning is occurring. This is a shift in approach, where teachers must now consider is the resource they are using appropriate for who and where they are teaching. A collaboration between the knowledge keepers in the community or school district to look at the resource would clarify and improve the way our resources are being used. An example of this blending of traditional knowledge and digital media that is used frequently in my practice, and will be a feature in our project, is the SENĆOŦEN first voices website. Elders and speakers from the community have contributed their words to construct a comprehensive and interactive website containing words, stories, and media to teach the understandings of groups using that language. This website could be viewed from the five guiding principals for integrating technology in schools. The main principles that it follows are one of positivity, constructiveness, and simultaneity. It is a resource which acknowledges that the preservation of language requires perseverance and resiliency; the contributors are motivated by the possibilities and future where the next generation still can speak and use their language; and the elders and knowledge keepers are active in the schools and communities, answering questions about their culture and language to keep the fire and language alive for generations.

Background Check

Pedagogical Alignment

The model which is the most useful for incorporating technology into my classroom is the TPACK model because of how the lessons are developed and planned. First, instructor decides the learning outcomes of the lesson; this is the content. The second is which activities will be used in the lesson; this is the teaching pedagogy. The third is deciding which technology, from pens and paper to smartphones and videos, will be most effective in the activity for delivering the content. This model aligns with how I currently plan my lessons, so to be able to support my teaching methods with a model is very reassuring as a new educator. As a secondary trained teacher with a degree in science, it was a requirement when being hired as a teacher that I have a strong background in science and math. When teaching in a high school setting, your background knowledge in what you are teaching is critical in order to convey higher level thinking and complex topics to older students. The TPACK model prioritizes content and background knowledge, which is what has been my priority as an educator in my pedagogical development. Using pedagogy and technology to support content delivery is the basis for the TPACK model, which is how I structure my lessons and units in my science and math classes.

Background Knowledge

When examining the TPACK model, background knowledge and a high level of understanding of the content is required to simplify and present the material to students. I can relate to this through my teachings of computer science and biology to secondary students. During the summer, I completed the Introduction to Computer Science course with Microsoft, where I learned the basics of coding, programming, and simple game development using coding software. After completing the introductory course, I attended some workshops in Java script and Python coding in order to become proficient at those programs as well. Before starting the summer training, I had no previous experience using computer coding software, and I knew that I would not be able to effectively teach my students without having some background in this topic myself. Taking the Java and Python training courses allowed me to become more advanced in the course than I will be presenting to my students. It also provided an extensive knowledge base for me to draw on while working with my students. Reflecting on the TPACK model, I would have struggled to present more complex lessons in a simplified way in the introductory course had I not done the more advanced training. The TPACK model acknowledges that in order to simplify a concept for students, the instructor must have a higher level of understanding of the content. I believe this higher level of understanding also instills confidence in the instructor and encourages teachers to take on new courses that they may not have taught before. With this Java and Python training, I was also able to assess which coding software we would be using to best support the students learning. Without this further training and increased expertise in my field, I would not have been able to effectively decide which programs or technology would be best.

Supporting Inquiry Based Learning

In the new curriculum, each subject has a large inquiry based component, where students have the opportunity to explore a topic of interest to them within the subject. With inquiry based research, topics can expand far beyond the prescribed curriculum, and advanced questions can be explored. Without a teacher who has a well-developed background knowledge of the topic, the students research areas and questions could be limited. If the teacher leading the inquiry research has an extensive background knowledge of the topic, students can explore complex questions and broader subjects because of the teachers’ expertise in the field. The pedagogical insight for leading an inquiry based unit is highlighted, and the use of technology will be properly utilized because the teacher is aware of how to lead an inquiry unit based on a topic they are familiar with. Inquiry projects are best supported using the TPACK model, because it acknowledges the necessity of having a well balanced educator in the topics of teaching pedagogy, background content, and technology.

Technological Support

The TPACK model uses technology to support the content. In order to use the technology most effectively, it is critical to have a sound understanding on what you are teaching. This model favours the well-rounded individual and backs up lifelong learning. Teachers with a sound background in biology are able to go to a professional development conference to learn about a way to present the learning using a new technology and then present the lesson with that new technology in their classroom. They are not experts in the field of biology or technology, but their interest and experience in both fields allows them to blend the two worlds together to present the information to their students. This method reflects my method of teaching because I am actively looking for ways to present my information better. I have a sound understanding in both my subject areas of science and math, and technology – but I am not an expert in any of those topics. My skills as an educator and pedagogical background in teaching young adults, mixed with this technical knowledge background enables me to assess which technology to use for each lesson based on the content and learning outcomes for the student.

The Who and The What

The students and the learning environment are large components in the TPACK method, along with the technology and content. Who you are teaching to is as important as what you are teaching. While the content you are delivering to your students may be the same, the technology and teaching styles will vary based on which students you have in your class and how they are best able to learn. An example of this is while one math class may learn best through notes from a slideshow and guided practice, another class may learn best through videos and small group activities. The learning outcomes may be identical, but the technology and pedagogy behind the delivery is different depending on which group of students are being taught and their differing learning environments.

Step-by-Step

The SAMR model appeared to be much more regimented in terms of the steps used to implement the model in your teaching. While the TPACK model functions as more as a Venn diagram, integrated model, SAMR was more of a step by step guideline for using technology in place of traditional teaching, when appropriate. Substituting technology for pen a paper, enhancing your lesson by using technology such as internet links rather than textbooks, modifying your lesson to use technology when it is more appropriate, and assessing whether or not technology would make your lesson more valuable to your students. The augmentation portion of the SAMR model aligned most with my teaching beliefs where it is important to enhance your lesson with technology where appropriate, rather than doing it to tick a box or use the technology simply because it is there. The technology needs to have a purpose, whether it be replacing another resource of inferior technology, or supporting handwritten notes to deliver content, including graphic organizers such as Prezi. Currently, using my NewRow online classroom platform to deliver and moderate my computer science course, is an example of augmenting my unit to include technology. Instead of a traditional face-to-face model of teaching physically in the classroom, I have used NewRow to allow for computer science professionals in Vancouver to deliver the course content in a much more effective way to my students. Augmenting my unit and replacing face-to-face with online instruction enhanced the quality of my lesson, and follows the SAMR model process. While both models are effective and view technology as a supplemental, not essential part of education, the wholistic integration including pedagogy, knowledge background, and technology with the TPACK model resonates the most with my teaching philosophy.

1994: The World Wide Web Was Born

Book vs e Book reader published November 16, 2012 by Frederick Deligne politicalcartoons.com

Before reading the articles on the Clark-Kozma media debate, I expected Clark to completely swear of technology, and for Kozma to embrace using technology entirely. I predicted that Clark would support no technology in the classroom whatsoever, and only use paper, pencils, and direct instruction in education and learning. Kozma, on the other hand, I thought would opt for entirely online, self-directed courses, using Smartboards, videos, and mediums like digital games to connect students learning without direct in-person instruction. A debate is usually black and white, with one side opting for no technology at all, and the other supporting it entirely for all learning. What I discovered, after reading and watching supporting videos regarding the Clark-Kozma media debate, is that it wasn’t really a debate at all, but rather an elaboration and continuation of the examination of the usefulness of technology in education.

Clark presented the point that technology and media do not need to be present in order for learning to occur, and that only certain medias are more effective for certain learners, learning goals, and tasks (Clark, 1994). I agree with Clark’s point that the media and technology aren’t necessary for the learning to occur; teachers and educators must be present in some form or some point of the learning to direct the students to the correct learning outcomes. There needs to be critical assessment from the teacher to ask “is this media supporting what the learning outcomes of the student are?” The media is the vessel or portal from which the content and lesson comes from, but the media or technology platform is not the source of content or material. In order for the media to be used effectively, there has to be a source of knowledge or information that is integrated into the technology. Let’s look at a Smartboard, for example: the Smartboard alone is not what the students are using to learn; they are learning the content that the teacher or educator has loaded onto that technology which is then presented through the Smartboard media in an integrated way that is captivating and experiential. Without the effort from the teacher to load the videos, whiteboard notes, slideshow animations and content, the Smartboard alone would not be the source of learning, it would just be a blank digital screen. The merging of content and media is effective because it delivers content in a dynamic, multimedia way which is engaging to learners.

The reason I feel that this Clark-Kozma media debate is less of a debate and more of an elaboration is because Kozma seems to take Clark’s points of replaceability, and the inability to learn from media alone, and find a space that media can be effectively used, despite its shortcomings. He acknowledges that media alone won’t deliver a lesson, but he does support the idea that media can be used to deliver a dynamic, engaging platform to deliver otherwise dull or difficult content. His argument that using media is a complementary process connecting the learner, content, and technology to allow for the information to be processes in a multitude of ways, including visually, audibly, and kinaesthetically, is one that I agree with. His perspective on technology comes across as an agreement to Clark’s perceptions of the shortcomings of technology and seems to offer a solution for where technology and media can be useful in education. That being said, if I had to pick a side in this loosely defined debate, it would be with Kozma because of his practical merging of technology, media, and learning.

It has been 25 years since the Clark article was written, and a lot has changed in terms of media and technology both inside and outside of the classroom. Smartphones were an inconceivable notion of the future, and just having one computer in the entire school was deemed as high tech. Students were taught using blackboards, paper, pens, and textbooks. Teachers taught at the front of the room in a face to face manner, and once they left the classroom the only way to connect was over the telephone or waiting until class the next day. I can relate to Clark’s views on technology because given the time when this article was written, there was skepticism on the new wave technology and how it would change the world we once new. Terms like “new-age”, “revolutionary”, “the computer of the future” were being tacked on to computers, calculators, and technology programs which gave the sense that it was hokey and a gimmick. I can imagine that teachers were not receptive and unsure about spending all of the school funds just to have a computer in their classroom which may become obsolete within the year. Technology was so new in schools and educators were not largely familiar with the programs or how to use the new multimedia devices, which meant they were not being properly integrated into the classrooms and learning. Computers were seen as a fun supplement to the learning and something to use for exploration and free-time after the real learning had occurred. In 1994, the World Wide Web was invented, so it is no wonder Clark did not see a connection between technology and learning… because it was such a new idea!

Flash forward 25 years later, with over 45 billion web pages existing and everyone owning their own smartphone with endless internet access in their own hands, technology has changed quite dramatically since the release of Clark’s article. It takes a few generations for new ideas to become integrated into large social groups, and the same goes for integrating and finding useful ways for technology to become part of education.

The new BC curriculum has suggestions for technology in every subject, and courses around media design, computer science and digital literacy have been created as a response to the changing job market, and presence of technology, electronics, and media in today’s society. What was once a flashy new invention is now an everyday, completely integrated existence. While Kozma’s article was also published in 1994, his views on the integration and supportive opportunities for technology and learning apply to our education system and student needs in our schools today. I am supporting my students through an introduction to computer science course, where they are learning the basics of coding, algorithms and computer literacy. The entire course is run through an online classroom, where instructors based in Vancouver are leading the course from their offices remotely. The instructors are experts in computer science, and have developed a curriculum to support the students learning of basic computer science. From Kozma’s perspective, the online classroom is not the source of the learning, but rather the support and platform through which the learning process occurs. The use of videos, digital whiteboards, coding games, and programs like SNAP! are used to transfer the instructors knowledge of computer science and coding to the students. Without the media, this learning could not occur, or would be much less effective, because the communication of ideas and theories revolving around computer science could not be as accurately demonstrated or taught.

There are implications for the misuse of technology in the classroom. The first is with students taking advantage of the media in ways which are not productive to the learning process, such as texting on their phones or playing games on the computer when they are supposed to be using their phones or computers for research or watching a movie. Technology and media redirect the control of the teacher, and it may be harder to manage a class when the technology is being used. It is difficult to manage a course when the instructors are online and not in person, or when students are asked to watch a movie about space travel, rather than learn about it from the teacher on the board at the front of the room. Direct, face-to-face instruction, with limited supplies is the easiest teaching situation to manage in terms of staying on task and classroom management, but that isn’t what learning and education should be about. Students need to have opportunities to explore new technology, outlets for learning, and be given a chance to learn though a multitude of ways. There is a time and place for media just as much as there is a time and place for teaching a lesson at the front of the room with students using pencils and paper. In this day and age, technology has come a long way and it is important to harness its potential to support the learning of our students.

Education is such a broad subject, with many different aspects involved in learning and students. There will always be new technology, fads, and initiatives developed which claim to be the next best thing in education. These new ideas and initiatives being introduced all the time include technology, programs, methods, and curriculum. Each new idea will spark debate amongst educators, because we work in a passionate field where everyone aims to provide the best learning experience for their students. With new fads and studies coming out, debates will form over which ones work the best for students. There will be topics or tools that I will disagree with, or see as impractical, but in order to deal with conflicting opinions, it is important to keep in mind that educators will always have their students best interests in mind and that we are all working towards the same goal of creating educated citizens of the future.

Technology: Approach With Caution

Three Tech Trends That Tick the Right Box

1. SmartBoards – An Oldie, but a Goodie

Most SmartBoards in schools can either be found in the janitorial closet, the basement, or covered in posters and sticky notes at the front of the classroom. These SmartBoards, or electronic interactive overheads and whiteboards, were installed or delivered to many classes across Canada, but many ended up in storage or were out of use soon after delivery. Why? Because most teachers didn’t know how to use this technology and simply gave up trying to integrate them into their classroom routine. Why would they have a use for SmartBoards when they already have a whiteboard and an overhead or projector in their classroom? The answer: Interactive learning and seamless integration.

In my grade 6 classroom, the times I lose the attention of my class the most is during task changeovers, or when I have to switch over from technology from the projector back to the whiteboard. As I am fiddling with my HDMI cord to show a video, or becoming entangled in the projector screen cord to display the worksheet on the document camera, my students start chatting, get out of their seat, and I lost their attention entirely.

SmartBoards, with their integrated technology, reduce tech change over time from document cameras, overheads, projectors and whiteboards. Students don’t have the option to become restless or distracted, because you are no longer fiddling with cords or projector screens. Teachers can play videos right on the screen, draw with digital markers over their projected notes, or display images from the internet or draw them for the class. Interacting with your class and showing concepts in written, audio, visual, or video form is the best way to teach a lesson. SmartBoards combine all of those elements into one technology.

An additional invention that would be interesting would be a tablet where the students could interact with the SmartBoard from their desk. This would be similar to individual whiteboards, where students could show their answers or participate in activities on the board.

2. Virtual Reality (VR) – From Alien Invasions to Ancient Forest Exploration

When I took my class to the UVic Digital Scholarship Commons, we had an opportunity to check out their virtual reality room, and explore the Commons through augmented reality. Students could pick from riding a roller coaster, to shooting intergalactic space aliens in the VR room. Most of them ended their turn with a huge smile on their face… and maybe a little nauseated. Virtual reality gives classes an opportunity to explore worlds out of reach on a regular school day. From exploring an archaeological site in Ancient Greece, to a flight simulator across the Atlantic, the opportunities are endless. Virtual reality in my classroom would be great for students to explore the original territories of their relatives, take a walk with an elder through ancient forests, and visit other First Nations groups around the globe. Virtual reality allows students to explore activities and destinations beyond the scope of the physical classroom.

3. Augmented Reality (AR) – When Worlds Collide

While most technology aims to bring students outside of the classroom, whether it be delving into content on the computer screen, or exploration using virtual reality glasses, augmented reality attempts to blend the classroom and technology realms. My class uses an app called HP Reveal, where students can animate or create digital clues and videos using actual objects in the classroom. For example, a map of Canada can have QR codes which students scan with the app on their smartphones to learn more about historical events which happened in each province. Videos may play, images may appear, or audio recordings will play as the app is scanned over the QR codes printed on the map. This blending of classroom and technology is very applicable with the push for cross-curricular activities and engaging students in the classroom.

Another perk about AR and VR?

The varied price point for devices and technology. Top of the line virtual reality glasses and a laptop with a high processing speed are out of reach for most classroom budgets, and more expensive equipment means fewer devices per student. If top of the line VR glasses are not in the cards for your class, cardboard attachments for any smartphone device can be made, which work just as well! There are lots of VR apps out there, some free of charge, and can be used with these cardboard attachments.

Save your recycling! You can find a link to the cardboard VR headsets here
Where in the world are your students? You can access a wide range of VR apps, including Google Expeditions, here

Three Troublesome Technology Trends

1. Generation Z: A Bad Rap For a New Generation

The TopHat article outlining the 5 tech trends to watch in 2019, Generation Z is mentioned as being the next demographic of students. This generation comes after millennials, and have been born into the technological generation. They have never known a world without the internet, smartphones, or technology surrounding their everyday lives. The article mentions how these students will want technology and digital access in all of their lessons, and will want to be connected digitally in school and into their professional careers. They prefer watching videos over text and want digital interactions over face-to-face communication. What I have noticed in my classroom is actually the opposite; students crave face-to-face interactions, written work, and offline tasks because they are so surrounded by technology in their everyday lives. They didn’t choose to be born into a technology-centred world, it is the previous generations that have forced them to be living in the digital age.

With such an abundance of technology around, students in my class are drawn to the good old-fashioned games like checkers and cards – something they wouldn’t normally access at home. When given the choice for a free play activity, a majority of my students will opt for face-to-face games like cards over a game on the computer. I had a student who complained that there was not enough face-to-face communication among his peers and that they only communicated on their apps and phones (he then immediately went back on his phone.. but old habits die hard). There is a desire to connect with folks face-to-face and that is being lost in this generation. It is important to have a balance between hands on, technology free activities, and digital devices so that students remain connected to both worlds.

2. Personalized Devices – Quantity Over Quality

While having a class where every student has their own device would be great, this isn’t a reality for most schools. Commonly, the only schools able to afford a tablet or computer for each student are those which are privately or parentally funded. In today’s education age, technology seems to be the draw for picking which school your child will go to. If you can afford to attend a school which offers devices for every student, that would appear to be the superior school. Schools which aren’t able to offer technological incentives are often seen as less desirable. This creates a stigma between children who can’t help but notice the privileges other students at other schools have, including high tech devices. The quality of education depends on what the students are actually doing with the technology, not the simple fact that each student is offered a laptop upon arrival at school. There is a time and place for devices such as laptops and smartphones, but they aren’t crucial for receiving a quality education.

TedTalk: How to Fix a Broken Education System… Without Any More Money

Seema Bansal addresses the current problems and issues in our education system, and how technology is not always the solution…

3. Wearable Technology – a loss of people skills

Wearable technology can include a wide range of technology, from assistive speech  devices to smartwatches for each student. The first issue that is raised is the cost of providing each student in your class with a wearable piece of technology like a smartwatch. Schools which are privately funded would likely be the only schools able to afford this personalized technology. Most schools are struggling just to have enough desks and chairs for kids, let alone enough smartwatches for their students.

Another issue with wearable technology, is that teachers are using them to interact with their students during class. These watches are used to remind students to stay on task, or allow shy students to answer questions without having to speak out. It is important that teachers maintain that personal interaction between themselves and their students, which has a positive impact on classroom management. If those students acting out only receive a small buzz and a text message to their wrist, this method of keeping them on task will rapidly become ineffective. Students behave best when there is mutual respect and valuable interaction between teacher and students. Using these watches to allow shy students to answer questions will not serve them in the long run. In life, it is necessary to speak in front of a group, and the classroom should be the safest space to practice and become comfortable with speaking in front of your peers. Teacher and peer support in low-risk situations should support and develop student confidence with answering questions in class and public speaking. These wearable devices, if used incorrectly, could act as  a negative crutch for some students and hinder teacher to student relationships.

The Everest Effect: Doing Something Simply Because It’s There

The “Everest Effect” refers to the act of doing something just because you can. People climb Mount Everest, just because it’s there. The same goes for bringing new technology into your classroom. Should you bring in tablets to your classroom, just because you can? I find that with the rush of technology in our education system today, teachers are bringing in all of these new technology programs and devices just because they are offered to them, without assessing the actual educational value of these devices. Does having a laptop or tablet for each student really increase the education they are receiving? Do smartwatches really improve the behaviour of each student in the class, or are we just using these devices simply because they are there? It is critical for teachers to not assume that improved technology leads to improved instruction or learning.

Top Three Education Trends

1. Alternative seating in classrooms including stools, beanbag chairs, no furniture at all, and eliminating rows of desks
2. Twitter for teacher professional development year round
3. Global Connection Apps such as Tik Tok, SnapChat, and NewRow virtual classrooms

Holland & Holland – Acknowledging The Individual

In Holland & Holland’s article, Implications of Shifting Technology In Education, the authors address how to find a balance between the use of technology and other teaching methods. A main issue that resonated with me was the gap in technological knowledge which exists among teachers. With all of these new apps, robotics, tablets, and coding programs being released by tech companies almost daily, it is impossible for teachers to remain up to date on these new programs in order to teach their students. The importance for teachers to fully explore what technology they are using in their lessons is critical to deliver and implement these programs effectively. An example in my own classroom is my Intro to Computer Science course I am teaching this year. I spent some time in the summer completing the Intro to Computer Science curriculum and made sure that I was able to complete all of the assignments I will be delivering to my students. Holland and Holland address the gaps in student knowledge with technology, but gaps also exist in teacher knowledge as well. Before bringing any technology into your classroom, it is important that teachers are well versed and able to fully support their students learning.

It was refreshing to read this article because it effectively weaved technology, apps, and computer programs into learning styles and lesson delivery techniques. The authors explored online programs such as code.org and Hour of Code, but also addressed how to use these programs in a variety of student exploratory methods including inquiry, problem based learning, and global learning. Rather than showcasing the technology or program as the focus of the lesson, it became a part of a larger learning exploration. An example of this was using problem based learning with the support of online programs to solve their larger group problem. In my classroom, I am looking forward to using the Hour of Code from code.org as part of a global connection during our inquiry lesson. This way, the technology is not the centre of the learning process, but rather a part of the bigger learning picture.

Fostering Less Fear and Greater Confidence

Past, Present, and Future pathways of First Nations Ways of Knowing Concept Map. (CC: Hayley Atkins, 2019)

“The pedagogical challenge of Canadian education is not just reducing the distance between Eurocentric thinking and Aboriginal ways of knowing, but engaging decolonized minds and hearts.” – Battiste, M. (2002)

Teaching in the 21st Century gives educators the opportunity to extend their teaching beyond their classroom and include the global community. Classrooms should be equipped with technology to connect with professionals, educators, and knowledge keepers who may not be physically in the room. For my classroom next year, I have requested a video conferencing system and microphones for each of my students. This equipment will support computer science volunteers to instruct my students through an introduction to computer science course remotely. There will also be an option for students to complete the course with me, if they choose not to connect via the online platform. Connecting students to professionals in the growing technology industry while they are still in school will make it easier to apply for jobs, decide on a post-secondary path, and understand what opportunities exist in the field of technology. Computer skills, coding, and robotics are part of the prescribed new BC curriculum, and these topics will be explored during this computer science course. Aside from the hard skills required from the Ministry of Education, my intention of this new computer science course is to enrich the soft skills and real-life connections which are needed outside of school in the professional community. Networking, communication skills, and the ability to interact and learn from others, be it in person or online, are the soft skills which will help my students be successful after graduation and outside of school.

The students at our school do not have access to reliable internet outside of school hours. Internet and digital connectivity are an assumed right for individuals living in Canada, and our professional and education institutions have been designed around the assumption that everyone has access to internet all of the time. It is popular for schools use Google classrooms to conduct their courses, so that students can log onto their course outside of school hours to complete their projects or homework. These digital classrooms were designed as a response to the growing demand to have technology in school and reduce the issue of lost paper assignments. Where this technology falls short is for those individuals who do not have access to internet outside of school. Internet is not a right, it is a privilege; teachers need to be aware that many of their students do not have a computer at home where they can access these online platforms. A student may not have internet access due to their geographical location, economic status, cultural background, or level of family support for their learning. We cannot assume, despite which school our students attend, that they will be able to connect to internet at home. As a teacher, it is my responsibility to provide students with an opportunity to connect to the digital learning and networking community while they are in my classroom. Networking, and digital literacy are critical skills which will lead to future success for our students. Many of the jobs our students will have after graduation do not yet exist; it is our responsibility to prepare our students with technological skills to be successful in a rapidly changing global environment (Monroe, 2013).

Since the beginning of this graduate program, my perceptions of acceptable research methods and education structures have been transformed and broadened. I am learning strategies to combine my structured, Western science educated background with my current teaching position in a school which fosters culture, traditional knowledge systems, and an emotional and spiritual connection to learning.  My research project will revolve around the need for co-constructing curriculum for language and culture revitalization, drawing from community contexts to create curriculum, and teach in a way which represents all knowledge systems in BC. These knowledge systems include, but are not limited to First Nations Ways of Knowing and Western Science. I recognize that there are other forms of knowledge from other cultures and perspectives which I have yet to explore or incorporate consciously into my teaching.

Quantitative research has been my preferred method of research throughout my education. This method provides succinct, seemingly unbiased, data in a numerical form, which can be analyzed with statistics to produce a black and white solution to the question. There is a push among Western researchers to conduct quantitative research because it is perceived to be the most valid. Qualitative data encompasses interviews, story, personal connectedness, lived experience and emotions to analyze and provide insight into problems or areas of research. The data collected is not black and white, and every piece of information must be taken in the right context to understand the full meaning behind the data. While reading O’Cathain’s article on mixed methods assessment, I noticed that in order to produce meaningful qualitative research which will make a significant impact on the research community, it is common to have this qualitative data backed up by numerical findings (O’Cathain, 2010). An example of this could be a report on the most desirable neighbourhoods to live in. Researchers will conduct interviews and perspectives from the community members to produce a qualitative representation of which areas are the most desirable; this information, however, will not be as strong without accompanying numerical data such as the frequency of break-ins or proximity to hospitals to support this ranking. As a science and math teacher, I am trained to look at research from a numerical, unbiased stand-point and recognize that I am partial to data which is represented in a numerical way rather than emotion or interviews to support a claim.

A topic that is brought up frequently in educational assessment, is grading and assigning a number or letter to each student’s assignments. The common struggle for teachers is that they spend a large amount of time providing insightful comments and supportive feedback on a students work, but the only focus is the percent or letter grade attached. Students breeze over the comments and go straight to their mark. Trevor Mackenzie has adopted the guided inquiry process in his classroom, which looks at the process of student learning rather than letter grades. His issue with students only caring about what mark they get in the end resonated with me; I struggle with assigning a single letter grade to an assignment when my main focus is on the learning process of the student. How do we change our teaching practice to support the learning process rather than end result?

The new BC curriculum supports qualitative assessment, such as comments or feedback, rather than only a percent. The changing perspective is that education should be about supporting the students learning and guiding them through the learning process, and not the end product or report. The big ideas and core competencies of critical thinking, networking, community engagement and creating life long learners are now the priority for our students (https://curriculum.gov.bc.ca/).

As a researcher interested in assessment strategies, it is important to look at the paths our students take after high school graduation. Universities, and other post-secondary institutions base their admissions on a student’s GPA. If students need certain grades to get into their post-secondary institution programs, then it is no wonder that all of their focus is on their numerical mark. Their future depends on the grade tacked onto the end of their work. If we want to make a change to how assessment is perceived, then there needs to be a change at the K-20 level, not just K-12. Trevor Mackenzie’s assessment includes a student digital portfolio, which he discusses with each student throughout the course. How would our assessment at the secondary level change if universities or other post-secondary institutions based their admissions on the wholistic profile of a student’s learning journey, rather than just GPA alone?

Post-secondary admission requirements may be beyond my scope of influence in education, but what I can focus on is changing educators’ perspectives on incorporating First Nations Ways of Knowing, non-quantitative knowledge system, into their teaching practice.

To understand why teachers are hesitant to include First Nations content into their teaching, I have organized my thoughts into a concept map to explore the different branches or rhizomes of each topic involved in this larger research question.
Past, Present, and Future pathways of First Nations Ways of Knowing Concept Map

Approaching research from a qualitative perspective was a difficult transition from the numerical and statistical analysis I have been used to throughout my education career. While reading about Van Manen’s phenomenological and Chambers’ métissage research approach, I was surprised at how fitting these different lenses will be to my research project (Van Manen, 2014), (Chambers, 2008). The First Nations Ways of Knowing is rooted in the 5Rs: reciprocity, respect, relevance, relationship, and responsibility (Restoule, 2018). When incorporating First Nations content into your teaching, it is important that it is done is an authentic way which is respectful and relevant to yourself and your students. Phenomenological research is based on wonder and lived-experience, which aligns with First Nations Principals of Learning. My research methods will be primarily interviews, stories, experiences, and rooted in emotion. It will be important to take into consideration the individual experiences of the people I talk to, and acknowledge the validity in the emotions that are felt. Chambers’ explanation of métissage as a research method demonstrates that research can be collected in a variety of ways including drawings, stories, emotions, and written accounts, which need to be taken into consideration as a whole in order to come to an accurate conclusion. My concept map includes the different rhizomes, or pathways, which are included in this topic. The link is included above and also the image of the map is at the beginning of this post. Broadening my view of what valid research is, incorporating emotion into my analysis, and acknowledging that people have unique lived experiences will be critical when delving into my research project and teaching as a whole.

The big question I have at this point in time is “How will my self-reflection and unconscious biases affect who I talk to, what I hear, and what I take away as important or relevant?”

References

Battiste, M. (2002). Indigenous knowledge and pedagogy in First Nations education: A literature review with recommendations. Prepared for the National Working Group on Education and the Minister of Indian Affairs Indian and Northern Affairs Canada (INAC): Ottawa, ON: National Working Group on Education and the Minister of Indian Affairs Indian and Northern Affairs Canada (INAC). Retrieved from http://www.usask.ca/education/people/battistem/ikp_e.pdf

BC’s New Curriculum. (n.d.). Retrieved July 25, 2019, from the Government of British Columbia’s website: https://curriculum.gov.bc.ca/

Chambers, C., Hasebe-Ludt, E., Donald, D., Hurren, W., Leggo, C. & Oberg, A. (2008). 12 métissage: a research praxis. In J. G. Knowles & A. L. Cole Handbook of the arts in qualitative research: Perspectives, methodologies, examples, and issues (pp. 142-154). Thousand Oaks, CA: SAGE Publications, Inc. doi: 10.4135/9781452226545.n12

First Nations Principals of Learning. (n.d). Retrieved July 25, 2019, from the First Nations Education Steering Committee (FNESC) website: http://www.fnesc.ca/wp/wp-content/uploads/2015/09/PUB-LFP-POSTER-Principles-of-Learning-First-Peoples-poster-11×17.pdf

Fournier, S. and Crey, E. (1996).  Wolves in Sheep’s Clothing: The Child Welfare System.  Stolen from our embrace, (PP 81-114).  Vancouver, BC: Douglas & McIntyre. Retrieved from http://www.oacas.org/pubs/oacas/journal/2009Winter/antiopp.html

Monroe, E.A, Lunney-Borden, L.Murray Orr, A., Toney, D, & Meader, J. (2013).  Decolonizing aboriginal education in the 21st century. McGill Journal of Education, 48(2), 317-337. Retrieved from http://mje.mcgill.ca/article/viewFile/8985/6878

O’Cathain, A. (2010). Assessing the quality of mixed methods research: toward a comprehensive framework. In Tashakkori, A., & Teddlie, C. SAGE handbook of mixed methods in social & behavioral research (pp. 531-556). Thousand Oaks, CA: SAGE Publications, Inc. doi: 10.4135/9781506335193

Tessaro, D., Restoule, J.-P., Gaviria, P., Flessa, J., Lindeman, C., & Scully-Stewart, C. (2018). The Five R’s for Indigenizing Online Learning: A Case Study of the First Nations Schools’ Principals Course (Vol. 40), 125-143. Retrieved from https://www.researchgate.net/publication/328289320_The_Five_R’s_for_Indigenizing_Online_Learning_A_Case_Study_of_the_First_Nations_Schools’_Principals_Course

Van Manen, M. (2014). Phenomenology of practice: Meaning-giving methods in phenomenological research and writing (pp. 26-71). Walnut Creek, California: Left Coast Press. Retrieved from https://drive.google.com/file/d/1WVhDVIsKsHNXwH8iZ9zYXtma-RzpDbyO/view

« Older posts

© 2020 Techtrovert

Theme by Anders NorenUp ↑