Pedagogical Alignment

The model which is the most useful for incorporating technology into my classroom is the TPACK model because of how the lessons are developed and planned. First, instructor decides the learning outcomes of the lesson; this is the content. The second is which activities will be used in the lesson; this is the teaching pedagogy. The third is deciding which technology, from pens and paper to smartphones and videos, will be most effective in the activity for delivering the content. This model aligns with how I currently plan my lessons, so to be able to support my teaching methods with a model is very reassuring as a new educator. As a secondary trained teacher with a degree in science, it was a requirement when being hired as a teacher that I have a strong background in science and math. When teaching in a high school setting, your background knowledge in what you are teaching is critical in order to convey higher level thinking and complex topics to older students. The TPACK model prioritizes content and background knowledge, which is what has been my priority as an educator in my pedagogical development. Using pedagogy and technology to support content delivery is the basis for the TPACK model, which is how I structure my lessons and units in my science and math classes.

Background Knowledge

When examining the TPACK model, background knowledge and a high level of understanding of the content is required to simplify and present the material to students. I can relate to this through my teachings of computer science and biology to secondary students. During the summer, I completed the Introduction to Computer Science course with Microsoft, where I learned the basics of coding, programming, and simple game development using coding software. After completing the introductory course, I attended some workshops in Java script and Python coding in order to become proficient at those programs as well. Before starting the summer training, I had no previous experience using computer coding software, and I knew that I would not be able to effectively teach my students without having some background in this topic myself. Taking the Java and Python training courses allowed me to become more advanced in the course than I will be presenting to my students. It also provided an extensive knowledge base for me to draw on while working with my students. Reflecting on the TPACK model, I would have struggled to present more complex lessons in a simplified way in the introductory course had I not done the more advanced training. The TPACK model acknowledges that in order to simplify a concept for students, the instructor must have a higher level of understanding of the content. I believe this higher level of understanding also instills confidence in the instructor and encourages teachers to take on new courses that they may not have taught before. With this Java and Python training, I was also able to assess which coding software we would be using to best support the students learning. Without this further training and increased expertise in my field, I would not have been able to effectively decide which programs or technology would be best.

Supporting Inquiry Based Learning

In the new curriculum, each subject has a large inquiry based component, where students have the opportunity to explore a topic of interest to them within the subject. With inquiry based research, topics can expand far beyond the prescribed curriculum, and advanced questions can be explored. Without a teacher who has a well-developed background knowledge of the topic, the students research areas and questions could be limited. If the teacher leading the inquiry research has an extensive background knowledge of the topic, students can explore complex questions and broader subjects because of the teachers’ expertise in the field. The pedagogical insight for leading an inquiry based unit is highlighted, and the use of technology will be properly utilized because the teacher is aware of how to lead an inquiry unit based on a topic they are familiar with. Inquiry projects are best supported using the TPACK model, because it acknowledges the necessity of having a well balanced educator in the topics of teaching pedagogy, background content, and technology.

Technological Support

The TPACK model uses technology to support the content. In order to use the technology most effectively, it is critical to have a sound understanding on what you are teaching. This model favours the well-rounded individual and backs up lifelong learning. Teachers with a sound background in biology are able to go to a professional development conference to learn about a way to present the learning using a new technology and then present the lesson with that new technology in their classroom. They are not experts in the field of biology or technology, but their interest and experience in both fields allows them to blend the two worlds together to present the information to their students. This method reflects my method of teaching because I am actively looking for ways to present my information better. I have a sound understanding in both my subject areas of science and math, and technology – but I am not an expert in any of those topics. My skills as an educator and pedagogical background in teaching young adults, mixed with this technical knowledge background enables me to assess which technology to use for each lesson based on the content and learning outcomes for the student.

The Who and The What

The students and the learning environment are large components in the TPACK method, along with the technology and content. Who you are teaching to is as important as what you are teaching. While the content you are delivering to your students may be the same, the technology and teaching styles will vary based on which students you have in your class and how they are best able to learn. An example of this is while one math class may learn best through notes from a slideshow and guided practice, another class may learn best through videos and small group activities. The learning outcomes may be identical, but the technology and pedagogy behind the delivery is different depending on which group of students are being taught and their differing learning environments.


The SAMR model appeared to be much more regimented in terms of the steps used to implement the model in your teaching. While the TPACK model functions as more as a Venn diagram, integrated model, SAMR was more of a step by step guideline for using technology in place of traditional teaching, when appropriate. Substituting technology for pen a paper, enhancing your lesson by using technology such as internet links rather than textbooks, modifying your lesson to use technology when it is more appropriate, and assessing whether or not technology would make your lesson more valuable to your students. The augmentation portion of the SAMR model aligned most with my teaching beliefs where it is important to enhance your lesson with technology where appropriate, rather than doing it to tick a box or use the technology simply because it is there. The technology needs to have a purpose, whether it be replacing another resource of inferior technology, or supporting handwritten notes to deliver content, including graphic organizers such as Prezi. Currently, using my NewRow online classroom platform to deliver and moderate my computer science course, is an example of augmenting my unit to include technology. Instead of a traditional face-to-face model of teaching physically in the classroom, I have used NewRow to allow for computer science professionals in Vancouver to deliver the course content in a much more effective way to my students. Augmenting my unit and replacing face-to-face with online instruction enhanced the quality of my lesson, and follows the SAMR model process. While both models are effective and view technology as a supplemental, not essential part of education, the wholistic integration including pedagogy, knowledge background, and technology with the TPACK model resonates the most with my teaching philosophy.